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Abstract 

Numerical results of the nolinear evolution of longitudunal insta- 
bilities of bunched beams are presented. An argument is made for a 
resealing of mult,i-bunch dynamics to a single-bunch case for the case 
of a narrow-band impedance exciting a single coupled-bunch mode. 
Saturation effects due to the decoherence caused by tune spread are 
categorized according to the magnitude and t,ype of impedances. The 
new phenomenon of non-saturating instability (beam split,ting) is de- 
scribed. Slow decay of instabilities after saturation with random-like 
bunch centroid oscillations (“beam turbulence”) is observed and dis- 
cussed. 

1 Introduction 

Coherent instabilities of beams in high-energy accelerators due t,o the in- 
teraction with self-induced wakefields were studied extensively over the la,st 
decades within the framework of t.he linearized Vlasov equation. In t.his 
a,pproach, one solves for the complex-frequency of the small pertnrba,tions 
of the beam density. However, when dealing widh an unstable situation, 
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the method applies only to the very early stages of the instability devel- 
opment and is therefore of limited value. Furthermore, the practical issue 
of emittance growth due to an instability can not be clarified in the linear 
analysis. 

The la&r, nonlinear stages of longitudinal instability evolution for a 
coasting beam were studied by a, few authors /l-3/. Some numerical simu- 
lation studies were carried out for the bunched beam, but with the emphasis 
on a, comparison wit,h the linex theory and the thresholds of instabilities 
/4/. Numerical simulation results /l/ indicated that the longitudinal insta- 
bilities of a coasting beam always saturate and eventually decay due to the 
effect of decoherence. A theory of this phenomenon, predicting the energy 
spread blowup was developed in Refs./2/ and /3/. 

In the present paper, we undertake a numerical simulation study of the 
late-stage, nonlinea~r development of longitudinal instabilities of bunched 
beams. Some phenomena observed are quite unusual for the accelerator 
physics domain and an effort is made to establish a qualitative connection 
with some esoteric concepts of plasma physics. This may allow a full theo- 
retical description in the future. 

The simulation is carried out for the simplest model which a~llows for t,he 
effects of nonlinear saturation of an instability due to the tune sprea,d in 
the beam. This model consists of a single bunch interacting with a purely 
dipole-mode wakefield force (long wavelength/ low frequency impedance in 
the cla~ssification of Ref./5/). 1% present a theoretical argument that such 
a single-bunch model also describes the dynamics of a multi-bunch system 
when the impedance is narrow-band and peaked near a single revolution 
harmonic. 

One of the major findings of our study is that the stabilizing effect of the 
tune spread depends very sensitively on the sign of the coherent frequency 
shift which is determined by the imaginary part of the effective impedance. 
When t,he coherent frequency is shifted from t.he synchrotron tune in t,he 
direction opposite t,o that of the incoherent tune spread (which is always 
negative for the sinusoidal RF potential), the instability can not be fully 
saturated by the decoherence due to the tune spread. One can observe 
instead that either the whole beam or a pa,rt of it that splits off the core 
oscillates with increasing amplit,ude without decohering. This beam splitting 
phenomenon is interpreted as the tmpping of particles in the separa,trices 
of self-excited nonlinear resonances, similar to the BGK modes in plasma, 
physics. 

Simulation result,s on emittance growt,h are presented from the perspec- 
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tive of an “overshoot” description. A simple scaling law for emittance growth 
with the centroid oscillation amplitude is derived for the case of a, small syn- 
chrotron tune spread. 

L&e stages of instability development demonstrate a slow decay. The 
oscillations in this regime become random-like and the emittanre continues 
growing. This behaviour is interpreted as a self-sustained “beam turbu- 
lence“. 

The plan of the paper is as follows: In Section 2, we present, some theo- 
retical cosiderations regarding the applicability of the model and the scaling 
of time evolution of observables with the tune spread and impedances. In 
section 3, we present the results of numerical simulations. Discussion a,nd 
conclusions are given in Section 4. 

2 Theoretical considerations. 

2.1 The model. 

We sdudy the model of the longitudinal dynam,ics of a bunch interxting 
with a localized wakefield that is represented by the equations: 

ci + w,‘zi - x23 = Ir +z( t) (1) 
fj + cwj + w:q = mra,,(t) 

where time is normalized to make the revolution frequency (v(~ = l1 the 
quantity 2; is the coordina,te of the i-th particle of a beam that consists 
of N particles, 5 is the coordinate of the centre of gravity of the beam 
S = $ Cz, z;, and 4 is the coordinat.e of a damped oscillator, coupled to 
the beam. The oscillator represents t,he amplitude of an effecbive single-mode 
impedance (see below). The interaction is periodic in time and instanteneous 
(62, is a 2K-periodic 6-function). The parameter 6 measures the strength 
of the interaction in the continuous limit N - x and is related to t,he 
conventional notations /5/ as c = 2~e* (wit,h e for electron charge. lo 
for t,he bunch current and Eo for the particle energy). Frequencies tis and 
wC are respectively the synchrotron and resonant impedance frequencies. 
The constant X > 0 measures the nonlinearit,y of the potential wrll for t,he 
beam particles and is alnays small in our st,udy. This corresponds to t,he 
assumption that the beam occupies a small fraction of t,he RF bucket(s). 

The model (1) can be derived based on the conventional considera,tions 
for the longit,udina,l motion of a single-bunch beam interacting wit,h a single- 
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mode longitudinal wakefield, if the bunch length is assumed short relative to 
t,he wavelength of the wakefield (Long wavelength approximation in the ana,l- 
ysis of Ref./.5/). The detailed d erivation is presented in Appendix A. The 
single-mode restriction is manifested in the pure harmonic (single-frequency) 
oscillations of the wakefield 4. The condition of the long wavelength of the 
wakefield allows to keep only bhe lowest-order dipole-mode interaction. 

Model (1) also applies to the multi-bunch case under certain conditions. 
In Appendix B we present the argument for the applicability of model (1) 
to the multi-bunch inst,ability with an arbitrary impedance(including the 
many-modes cae), that is peaked near a single revolution harmonic, and 
for the case of a weak interaction. The bandwidth of the impedance, Awz 
(the inverse of the characteristic decay time of the wakefield) has to satisfy 
the condition: 

(i) restricted banduGdth 

6w, < AU, < wo (2) 

where bw, is the tune spread in the bunches, 6w, = $(z2) and wO = 1 was 
left in it.s dimensinal form to emphasize the nature of the approximation. 
The other condition is that the interaction must be sufficiently weak: 

(ii) weak interaction 

6 << AL&W, (3) 

This condition is often satisfied in cases of prxtinl interest 

2.2 Stability analysis and scaling laws 

Throughout this study we will a~ssume tha,t the condition (i) of rrst.rict,ed 
bandwidth is satisfied for our model (1) ( with Awz = a). The dynamics 
t,hen can be simplified to a. (non-Hamiltonian) collective effective interaction 
of the particles in the beam as shown in Appendix B: 

s; f u,‘,Ti - x2:3 zz c( -.g,f + 32, 
ds 

14) 

where the c~omp1e.u effective impedance 2 = .?,+ii, is defined as i = Z(u.), 
with the regular frequency-dependent impedance: 

z(w) = - (2:)’ T w,’ + icucw + iL) _ (& + ,,L)’ 
(5) 
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However, for the numerical simulation, we used the original model (1) as it 
can be cast in the form of discrete-time mapping, which allows a considerable 
economization of cornput,er time. 

The linear stability analysis of model (4) can be done by the conventional 
linearization of the Vlasov equation (see e.g. /5/). Since the nonlinearity 
X is small, one can use the action-angle variables of the unperdurbed linear 
oscillator, I = Y& (?* t w~z’), and 8 = afan to obtain the dispersion 
relation for the complex coherent frequency w of centroid oscilla,tions z = 

1 = it.2 J dII$q 

c Ld2 - (cd,’ - X’I) ((9 

where X’ = 2, f”(l) is the unperturbed normalized density distribution 
and the integration is along the La,ndau contour. For a valishingly sma,ll 
tune spread X - 0, and a weak interaction I<.? i< w,‘, the complex coherent 
frequenc,y shift AU, = w - ws is: 

This defines both the growth rate Im(Aw,) and the (real) coherent frequency 
shift Re(Aw,). 

It is often true under realistic conditions that, both the coherent fre- 
quency shift Aw, and t,he incoherent tune spread 6w, are smalll so that one 
can use the approximation: 

(iii) fast synchrotron oscillations 

lAwsI < ~8 

/dw,l < us (8) 

This approxima,tion is used in the conventional linear stability a.nalysis (see 
e.g. /5/). The synchrotron oscillations then are fast and can be averaged 
over. For t,he nonlinear evolution in system (4), the only relevant, paramet,ers 
left, are &a,, Re(Aw,) and Im(Aw,). Any one of these paraneters defines 
the time sca~le, so that the “slow” evolution of coherent inst.ability depends 
essentially on two dimensionless paxmeters: 

c r = -Re(Aw.s) 
6w, 

c, = _ Im(Aus) 
6% 
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where the minus sign was inserted because the nonlinear tune shift is always 
negative, while the tune spread SW, is defined as a positive quantity. The 
stability border in the C,, Cc plane for a gaussian distribution was obtained 
from our simulation results and is shown in Fig.1. 

Fig.1 Stability border for the ga,ussian distribution fo N 
e-rl(wSO). The area under the curve is stable. 

All quantities perkning to the coherent instability evolution ca,n be 
scaled in the form y = y&(bw,t, C,, Ci) w h ere yo is the init,ia,l value and f, 
is a dimensionless function of three dimensionless arguments. In t,he present 
study we will concentrate on interpreting and categorizing the scenarios of 
nonlinear evolution in terms of parameters C, and Ci. 

2.3 Energy balance and emittance growth. 

The active part of the effective impedance 2, accounts for the energy loss 
(when 2, < 0) or production (when 2, > 0) -I the system. This is clear for 

t,he case of a, single particle A’ = 1, when --f $ is t,he conventional damping 
decrement. For rmmy particles, the energy balance is obta,incd from equation 
(41 in the form: 

dW rNi, (Sj* 

dt= w, 
(10) 



where W is the total energy of the system, comprised of both the incoherent 
and interparticle interxt~ions: 

~++?j +rNz;(s)* (11) 

with ? = l/N Ci xi. 
Under the condition (iii), the parameters E and X are smaL1, so that the 

frequency G* is a “fast” one. The motion of all particles then is separable 

into the slow a,nd fast, part as 2; = q?i cos(w,l+B;), with both action I; and 

angle Bi being slow variables. Averaging both parts of equation (10) over the 
fast oscillations and dropping the higher-order contributions from nonlineal 
and interparticle krms in W, one obtains the energy balance equation in 
the simplified form: 

d!T,, 
-= 

dt 
rNw,i,A’ (12) 

Here the unperturbed energy W,, = J?; and centroid oscilk- 

tions amplitude A = 
r-- 

$ + 3 (so that 3 = Acos(w,t + pi)) arc botb slow 

functions of time. 
In the slow-fast approximation, it is natural to define the emittance as the 

average over the fast oscillations, n = l/N (C; z’), so that 0 = WO/Nwf. 
Equation (12) defines then the rate of emittance growth and can be writden 
as: 

do A= 

x = Tgr (13) 

where ~~~ is the instability rise t,ime in the a,bsence of the tune sprad irrr = 
&. This simple scaling of emittance growth is a consequence of the 

fat, synchrotron oscillations approximation (iii) and therefore a,pplies only 
when the bea,m fills the small fraction of R,F bucket. 

3 Numerical simulation. 

3.1 Scenarios of evolution: Strong Landau damping. 

The evolution in model (1) is directly simulated by using many particles and 
implementing the single-turn mapping. In that ma,pping, the nonlinearity of 



oscillat,ions X is treated perturbatively, i.e. the mapping for z;, z?i betweeu 
the &functional “kicks” is that of a linear oscillator with the frequency 

The number of pxticles N was taken to be large enough to reproduce 
the continuous limit a,nd in cases close to the instability threshold was as 
high as N = 10’. 

We present the scenarios of in&ability cvolut,ion by dividing all cases in 
two categories: C, > 0 (Strong Landau damping) and C, < 0 ( Weal; Landau 
damping). The asymmetry of the stability border in C, as seen in Fig.1 
is indeed quite natural, since when the coherent tune is shifted outside of 
the nonlinear tune spread, no Landau damping is possible. The asymmetry 
of the linear stability diagram however is much less pronounced for other 
types of dist,ributions like fu N (1 -I/w,u)* (see Ref./S/) so our terminology 
is more applicable to the properties of nonlinear saturation then to linear 
stability. 

We first discuss the (Strong Landau damping) C, > 0 category. Four 
characteristic examples of inst,ability evolution in that category are presented 
in Figs%5. These examples are representative of four different scenarios that 
we loosely define by the relative strength of the instability (distance from 
threshold) a.nd bhe type of impedance: 

I) Strong instability C, >> C,,,, C; >> Ci,, 
II) Weak instability C, - C,,,, c’; N Cicr 

a) Reactive impedance C, > C; (or lZ,l > lZvl) 
b) Active impedance C, < Ci (or (lZ;l < lZ,l) 

The qmmtities C,,, = C,,, (C,/Ci), Ci,,. = Cicr (C,/Ci) are the critical 
(i.e.corresponding to the sta,bility border) values for a given va,lue of the ratio 
C,/Ci. The quantity C; is positive in all exanples (nega,tive C; corresponds 
to the st,able beam). 

An example of scenario la (Strong instability, Reactive impedance) with 
para,meters C, = 4.16, C; = 1.65 is shown in Fig.2. The time dependence 
of the centroid oscillations f(t) is plotted in Fig.2a. Emittanre grow%11 a,s a 
fun&ion of time a(t) is shown in Fig.2b. Samples of the corresponding phase 
spxe snapshots are shown in Fig.2c. Time is meawed in number of turns 
(number of kicks in model (1)). Th e instability rise time in the absence of 
tune spread is iyr = 188. (t,urns). 

8 



The centroid oscillat,ions in Fig.2a, as well as in all other cases to follow, 
presents itself as a fast-oscillating sinusoidal signal (with the synchrotron frr- 
qnency) with a slowly changing envelope, since the parameters are chosen 
so as to satisfy the condition (iii). The slow evolution in Fig.2a demon- 
strates 3 consecutive stages: 1) initial monotonic growth,, 2) saturation at 
some rather high level (comparable to the size of the beam), and 3) slowly 
decaying oscillations of apparent,ly random nature (“turbulence”). Transi- 
tion from smooth “laminar” envelope to the “turbulent” behaviour occurs 
approximately at the saturation point. The monotonic growth of the enve- 
lope of oscillations until saturation is the characteristic feat.ure of a Strony 
instability regime. 

Emittance evolution is shown in Fig.2b. The maknum rate of emittance 
growth is occuring roughly at the saturation point. After s&u&ion the 
emittance growth slows down considerably. We interpret it as a turbulent, 
regime with slowly-decaying quasi-random oscillations. 
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Fig.2. (a) Centroid oscilla,tions y = z(t) and (b) Emit- 
ta,ncr growt,h n(t) for the case of (Strong instability, R,eactive 
impedance) with C, = 3.16. C’i = 1.65, and ~~~ = 188.. 
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Fig.2c. Phase space snapshots for the parameters of Fig.2a 
and b. 

In Fig.2c the phase space snapshots of the distribution are shown for 10 
equidistant moments of time over the time span of evolution in Figs.2 a and 
b. These snapshot,s provide some insight int.o the nature of the processes 
leading to saturation and turbulence. One interesting property is that until 
saturation the bunch oscillates with increasing amplitude as a single entity 
without any visible effect of decoherence due to the tune spread. Closer 
to saturation, the bunch develops a thin “tail” of particles trailing behind 
it. After that,, the bunch is losing particles to it,s tail, diminishing in size 
and reburning back to the center of origin. The spiral-like tail of part,icle 
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density that the central bunch left behind is gradually decohering due to 
the phase-mixing. The remnants of the higher-density bunch near the center 
continues to maintain some small-scale motion, as the thin tail of that bunch 
is discernable for a long time. 

An example of scenario lb (Strong instability, Actiw impedance) for 
C, = 1.20, C; = 4.56is shown in Fig.3. The time dependence of centroid 
oscillations is presented in Fig.3a. The time scale is determined by 7sv = 
1221. (turns). The general pattern of evolution is similar to the previous 
case. The initial stage up to saturation is the monotonic growth of the 
oscillations. After saturation, the oscillations become random-like and decay 
slowly. 

Emittance growth as a function of time is shown in Fig.3b. After sat- 
uration, the emittance growth is slowing down. A series of phase space 
snapshots are shown in Fig.3c. One feature of this series that is different 
from the previous case is that the particles that are located at larger radia 
(anplitude of oscillations) at the moment of saturation start moving toward 
increasing amplitudes in a sickle-like formation. This structure persists for 
some time, though particles are apparently being lost in the course of the 
radial motion, producing a spare “tail” of density at large radia. We view- 
this structure as a weak remnant of “trapped modes” that are observed 
for the Weak Znndnu damping regime C, < 0 that is discnssed in the next 
chapter. 
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Fig.3 (a) Centroid oscillations y = Z(t) and (b) Emit- 
tance growth o(t) for the case of (Strong instability, .4ctive 
impedance) with C, = 1.20, C; = 4.56, and TV,, = 1221. 
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Fig.3c. Phase space snapshots for the parameters of Fig.3a 
and b. 

An example of scenko IIa (Weak instability, Reactive imp&we) for 
C, = 1.25, Ci = .49 is shown in Fig.4. This case corresponds to about the 
same ratio C,/C; as for the ca,se of Fig.2, and can represent then the sxne 
impedances but higher interaction strength t (current, in the ring). 
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Fig.4. (a) Centroid oscillations y = i?(t) and (b) Emit- 
tance growth u(1) for the case of (Weak instability, Reactive 
impedance) with C, = 1.25, C; = .49, and ~~~ = 315. 

The time dependence of the centroid motion is presented in Fig.4a The 
time scale is defined by 7gv = 315. An important distinction from the previ- 
ous cases is that the envelope of oscillat,ions is not a monotonically growing 
function of time even before the saturation. The signature of the weak in- 
stability, as observed from this and other graphs, is threefold: 1) the initial 
growth rate of the instability is very slow, as one would expect from the 
linear theory, 2) the first maximum in the envelope of the oscillations occurs 
early before the saturation and is quite small. It is followed by several more 
maxima of increasing amplitude before the saturation, and 3) maximally 
attainable amplitudes of centroid oscillat,ions arc much smaller than in the 
case of a strong instability. 

Emittance growth as a function of time is shown in Fig.41~. The satma,- 
tion point on the emittance curve is less pronounced than in the case of a 
strong instability. 

In Fig.4c the ,phase space snapshots of the dist,ribution are shown for IO 
equidistant, moment,s of time over the time span of evolut,ion in Figs.4a and 
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b. Most of the structure (radial and angular inhomogeneities) can be seen 
at t = 18000 and t = 24000, which are the moments of time close to when 
the saturation occurs. 

-5 
f- 6ci-J 

5 -5 
t- u&l 

5 -5 
t- k& 

5 

Fig.4c. Phase space snapshots for the parameters of Fig.4a 
and b. 

An example of scenario Ilb (Weak instability, Active impdance) for 
C, = .24; Ci = 39 is shown in Fig.5. 
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Fig.5. (a) Centroid oscillations y = Z(t) and (b) Emit- 
tance growth a(t) for the case of (Weak instability, Active 
impedance) with C, = .24, Ci = .89 and ~~~ = 175. 

The time dependence of the centroid motion is presented in Fig.%. The 
time scale is defined by 7gr = 175. (turns). All properties of the weak in- 
sta,bility (l)-(3) are true in this case as well. An apparent randomization of 
oscillations is ha,ppening before saturation. The decay of these after the sat- 
uration is quite slow and does not appear to be determined by any relevant 
time constant of the system. Remember here that what looks like broad- 
band oscilla,tions in Fig.5a is still a relatively slowly modulated sinusoida, 
signal, since the time scale plotted is quite long. 

Emittance growth as a function of dime is shown in Fig.5b. Small undu- 
lations on the curve are real (not a computational artifact) and correspond 
to the local maxima in the envelope of oscillations of Fig.5a. As in previous 
examples, the emitta,nce growth after saturation is slowing down but, does 
not disappear alt.ogether. 

In Fig.5c the phase space snapshots of the distribution are shown for 10 
equidistant moments of time over the time span of evolution in Fig.5s and 
b. Little structure can be discerned and one can only notice that azimuthal 
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and radial inhomogeneities of the density are quite irregular even before the 
saturation (which happens at about t = 14000). 
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5 

Fig.5c. Phase space snapshots for the parameters of Figs.5a 
and b. 

3.2 Scenarios of evolution: Weak Landau damping. 

In the case of Weak Landau damping C, < 0 the scenarios of evolution are 
qualitatively different from the Strong Landau damping case C, > 0. Two 
exanples for different ratios C,/Ci are presented in Figs.6 and 7. 

An example of evolution of a relatively strong instability (not close to 
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the threshold) with the Active type of impedance (with parameters C, = 
-.64, Ci = 2.97) is shown in Fig.6. Centroid oscillations and emittance as 
functions of time are shown in Figs.Ga and b. The striking feat,ure of these 
plots is that the instability does not saturate, as the centroid oscillat,ions 
grow to the level of 7 times the initial size of the beam and continue growing. 
More insight into this behaviour is provided by bhe phase snapshot series of 
Fig.&. 
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Fig.6. (a) Centroid oscillations y = Z(t) and (b) Emit- 
tance growth u(t) for t,he case of (Weak instability, .4&w 
impedance) with C, = -.64, C; = 2.96 and 7gv = 1880. 

Until the moment of time t N 12000 the bunch oscillates as a whole, 
while after that it decohrres into a spiral-like struclure. After t N 16000. 
the outmost parti&s form a sickle-like “beamlet” t,hat splits off the rest of 
the distribution and oscillates as a rigid entity with increasing amplitude. 
It is this nondecohering “beamlet” that causes unlimited growth of centroid 
oscillations and emittance in Figs.6 a and b. 
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Fig.Gc. Phase space snapshots for the paramet~ers of Fig.Ga 
and b. 

An example of instability with even wea.ker Landau damping (luger 
negative C,, Reactive impedance) with parameters C, = -2.89,Ci = 1.61 is 
shown in Fig.7. Centroid oscillations and emittame time dependencies in 
Figs.ia and b again indicate an unlimited growth. The phase space snap- 
shot series in Fig.7c shows that here nearly all particles are going into the 
nondecohering sickle-like formation, and just a tiny part of the bunch is left 
near the center. 
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Fig.7. (a) Centroid oscillations y = 5(t) and (b) Emit- 
tance growth u(t) for the case of (Weak instability, Active 
impedance) with C, = -2.89, Ci = 1.61 and TV? = 3455. 
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Fig.ic. Phase space snapshots for the parameters of Fig.7a 
and b. 

We suggest the term “beam splitting” for the phenomenon of a nonsat- 
urat,ing in&bility through the formation of nondecohcring “beanlets” (or 
whole beans). The border of the beam splitting region in the plane C,, Ci 
was verified by many additional runs to be defined by the line C, = 0 and 
the stability border of Fig.1. It was observed also that t,he border is a “soft“ 
one. i.e. the percenbage of part,icles trapped in the “beamlets” approaches 
zero when approaching the border. In some cases one can also see several 
“beamlet,s” successively splitting from the core of the distribution. 
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3.3 Emittance blowup and overshoot. 

In the past, substantial effort was dedicated to study, both in theory and in 
simulation /l-3/, the energy spread blowup due to longitudinal instabilities 
of coast.ing beams. The main result of these studies was the identification 
and analysis of the overshoot phenomenon. This implies that the instabil- 
ity is always transient, and gradually dies away when the spread is blown 
up above t.he critical value. The term overshoot specifically aliudes to the 
dependence of the final spread on the initial: the smaller is the latter, the 
larger the former. 

In the bunched-beam model in the Strong Landau damping regime C, > 
0 the instability does not saturate and the concept of the overshoot does not, 
apply. For Weak Landau damping C, < 0 however the approxh is justified 
and we studied the emittance blowup process from that perspective. The 
results of these simulations, when the initial emittances were changed while 
keeping the impedances Z,, 2, constant, are presented in Figs.8 and 9. 
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Fig.8. Elnittance growth o(t) for different inital values o(O) 
The impedances ratio is C;/C, = 5.38. 

In Fig.& the case of active impedance with t,he ratio Ci/C, = 5.38 
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is shown. The basic pattern of emittance growth in this case follows the 
overshoot scenario. Slight deviations from this scenario though are noticable 
as well, as one can see some pairs of curves intersecting twice. Another 
feature is the sharp rise of emittance blowup for o(O) < 1.. It is associated 
somehow with the transient sickle-like structures as seen in Fig.3c. 
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Fig.9. Emitt,ance growth r(t) for different inital values u(O) 
The impedances ratio is C</C, = 1. 

In Fig.9, the rise of emittance blowup with the lowering of u(O) is more 
gradual t,hen in Fig.8. One can again see some peculiarities in emittance 
growth near the instability threshold, with the curves intersecting twice. It 
can also be noticed that near the threshold the emittance does not always 
completely saturate, but rather continues some slow growth. We return to 
the discussion of this phenomenon in the next section. 

3.4 Beam turbulence 

Cent,roid oscillations a,fter the saturation in Strong Landau rlanzping regime 
C, > 0 appeared to a certain degree random in all the examples that were 
given so far. To quantify this randomness, we took a series of power spectra, 
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of relatively short sections of centroid oscillations 5(t). The length of the 
series was chosen to cover the duration of the period up to and around the 
saturation. The centroid oscillations and emittance growth for this example 
ale shown in Figs.10 a and b. The values of C, = 1.12, C; = 1.12 are not 
very close to the stability border (see Fig.1). In Fig.lOa, one can see the 
distinct irregular outbursts of centroid oscilla,tions after saturation that also 
produce small irregular steps in the curve g(2) in Fig.lOb in accordance with 
the emittance growth scaling law (13). 

mm 

a b 

Fig.10. Beam turbulence: oscillation randomization after sat- 
ura,tion. (a) Centroid oscillations y = Z(r) and (b) Emittance 
growth o(t) for the case C, = 1.12, C; = 1.12 and 7gr = 122. 

In Fig.lOc we present the series of the power spectrum evolution for the 
sections of the signal y(t) of Fig.lOa,. The whole period was divided in 10 
sections, and time labels refer to the end of each section. Different plots were 
scaled vertically to have the Same height of the peaks. Before the saturation 
at about t = 3000 the spectra are clearly single-peaked and quite na~rrow. 
After the saturation (t,he plot at 1 = 3816), the spectrum becomes brwder 
several times and develops a multi-peaked st,ructure. This proves our thesis 
of t.he randomization of oscillations, or the onset of turbulence, after t,he 
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saturation 
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Fig.lOc. Evolution of short-term power spectrum of cendroid 
oscillations in Fig.lOa. Synchrotron frequency is ws = 2. 

The question of the long-term behavior of the instability was touched 
upon in Section 3.3. It appeared from the data in that section that the 
instability, at least in some cases, does not completely decay after the sa,t- 
uration. Instead, one observes low-level quasirandom( turbulent) centroid 
oscillations that persist for a long time after the saturation and cause a slow 
emittance growth. One more example of a long-term evolution of this kind 
for the case of Fig.lOa,b is given in Fig.lOd. The sensitivity of the long-term 
turbulent emittance growth to the number of particles in the simulation is 
very high (Iv = 3.10’ particles were required to reproduce the continuous 
limit in this ca,se). 
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Fig.lOd. Nondecaying low-level turbulence for the case of 
Fig.lOa,b. (a) Centroid oscillations y = g(t) and (b) Emit- 
tame growth u(t) for the case C, = 1.12, C; = 1.12 and 
T gr = 122. 

The phase space plots after the saturation in all previous examples show 
only small azimuthal inhomogeneities that are hardly discernable by eye. 
That is the case as well for the tubulent stage of Fig.10. To provide more 
insight into the nature of t,he turbulence, we present in Fig.lOe a few line 
density profiles for the case of Fig.lOa,b. One can see that the turbulent 
regime corresponds to the presence of a short-wavelength lowwpmplitude 
“microstructure” or “jitter” on top of a smooth density profile. This mi- 
crostructure undergoes relatively fast (on the scale of t,he time span of 
Figs.lOa-e) varia,tions that appear to be random. 
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Fig.lOe. Line density profiles evolution for the case of 
Fig.lOa,b. 

4 Discussion and conclusions. 

The physics of the observed nonlinear phenomena of saturationl beam split- 
ting and turbulence is far from being fully cla~rified by our numerical findings. 
This calls for a fut,ure study, and we would like to make a few suggestions 
in that direction. 

The most striking of all nonlinear effects observed is the nonsaturat- 
ing instability/beam splitting phenomenon that happens for Clir& Landazr 
dampiny regime C, < 0. We suggest that this may be interpret,ed as the 
trapped-particle nonlinea,r modes, in extension of a, similar concept of per- 
sistent nonlinear (BGK) waves in plasma physics (see, e.g. /I?/). We expect 
by that analogy that in our system a group of paticles can sbay, under 
certain condit,ions, near the center of the self-driven nonlinear resonance. 
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The elongated shape of the “beamlets” in Figs& and 7c corraborates that 
interpretation, since that is what one would expect to see for a distribution 
of puticles near the center of a narrow resonzmce. 

The conceptual importance of the BGK modes in plasma physics stems 
from the fact that they present themselves as persistently oscillating states 
where no energy exchange between the particles and the wave is ta,king place. 
In our case, the energy is pumped into the syst,em by the real part of the 
impedance (see equation (lo)), and persistent steady-state oscillations are 
impossible. The trapped (BGK) modes for our system can be visualized 
as the states without any Landau damping, with the amplitude of a dipole 
oscillations increasing in time by taking the energy from the external source 
(which is eventually the RF system). The resonant frequency will change 
a,s well, while the particles stay inside the separatrix of the resonance as it 
moves towards larger radia. The difference with conventional BGK modes 
is in this (anti)dissipation in the system that causes the frequency sliding. 
Thus we suggest the term “sliding trapped (BGK) modes”. A preliminary 
result is that these modes exist only for the We& Landau damping regime 
C, < 0, conforming with OUT observations of instability development scenar- 
ios. One c,an anticipate obtaining a theoretical description of beam splitting 
phenomenon on the basis of this approach. 

Beam turbulence is another class of essentially nonlinear phenomena. 
Even after saturation when the emittance becomes large enough t.o make a 
beam stable for any smooth bell-shaped distribution, the small-scale “mi- 
crostructure” of the density can persist in the beam for a long time, causing 
low-level centroid oscillations and slow emittance growth. This may be an 
issue of practical importance and requires a further study. 

Emittance growth is related to the amplitude of the centroid oscillations 
through the convinient scaling law (13). The self-consistent theoretical pre- 
diction of how the oscillations will evolve is however very difficult. Some 
estimates of this kind were obtained in a quasilinear “overshoot“ approach 
/i/ along the same lines as in the coasting beam theory /2-3 /. However 
these are baed on the single-mode approximat,ion and may not work well for 
the weakly unstable case when the turbulence sets in early before saturation. 
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APPENDIX A 
The general expression for the collective force in the time domain is (see; 
e.g. 181): 

F(z,t) = $1 ds’p(s’, t - lTo)U’(ILo + +’ - z) i-41) 

where p(z, f) is the line density of the beam, U’(z) is the wa,kefield, 2’0 is the 
revolution period. Lo is the circumference of the ring and the summation 
is over all preceding revolutions. The intensity parameter K is 6 = c+&Q 
(with c for electron charge. I0 for the bunch current and Eo for the particle 
energy) /5/. The form (Al) is equivalent to a more familiar frequency- 
domain representat,ion when the line density perturba,tion p’ is a harmonic 
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function of t,ime: 

F’(z,t) = -in-yp’,Z(pt cL)e”(““‘-Rt) (A21 
P 

where p& are the Fourier harmonics p/(x, t) = C, pb~~(p~-~*), a,nd Z(w) is 
le 

the impedance Z(w) = Jdxe’“I‘ Lo W(z). The condition of the long wave- 
length of the wakefield relative to the bunch length is used in expanding 
the wakefield W in formula (Al) up to linear terms in the small argument 
z’ - 2. This yields the force as the sum F = Fo + P of an inc.oherent 
(p-independent) part F, and a coherent part F’. The latter is found to be 

F’ = K=& - IT&V’(&) (As) 
idI 

where 5(1) = Jdz’s’p(s’,t) is the centoid coordinate and W’ = s is the 
wakefield derivative. 

In our model (l), where the wakefield is localized (the interaction is 
&functional) the collective force F = m&, can be expressed as 

F(t) = & c ~(([t]~~ - 2?in) w’(t - [tlzr - 277nj (A-l) 
n=o 

where [1]z7 is the moment of time of the last, “kick” [tlzn = 2r(2/2~] ([...I 
denotes the integer part). The quantity W’ is given by 

W’(t) = sin(st,t)ew’t (A5) 

where w,+L+ = -icu/2+J -a’/4 + w,“. This expression becomes equivalent 
to t,he distributed-wake (A2) if one utilizes the condition of the synchrotron 
frequency being much smaller then the revolution frequency us < 1. Indeed, 
averaging F(t) over the “fast” time scale L% = 257 yields: 

F(t) = & c .C([& - 2xn)W’(27rn) 
n=o 

This is equivalent to the expression (A2) (with a specific choice of IV’ (.45) 
and K = c/Zs) since ~(2) changes very little over the revolution period 
At = ILK. 
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APPENDIX B 
Consider a multi-bunch longitidinal motion with a localized impedance of a 
long wavelength: 

2:“’ + “j5p) - x (dy” = GqE*,(i +2x$) 
M 

41 + wi + Whl = dz c &d”)&*,(t + 2T3 n=1 
where Q = C, $$qj is the sum over different, modes Q! with different 
frequencies wg, and damping decrements ai that are coupled to the beam 
with a different coupling strength ~1, Furthermore, M is the number of 

bunches and ri”’ is the coordinate of the i-th particle in the n-th bunch. The 
representa,tion of the wakefield in (Bl) is fairly genera,1 as one can represent 
an arbitrary spectrum of impedance as a superposition of Lorentzian cw~es. 

We assume now that the dominant modes of the wakefield are tuned near 
only cone of the coupled-bunch mode frequencies (w, - (p $ kM)I < 1 (here 
IL is the coupled-bunch integer index between 1 and M) and that, the width 
of the impedance peak near that coupled-bunch frequency is small Awl < 1 
(right-hand side of condition (i)). These conditions allow us to have a single 
coupled-bunch mode dominating the dynamics. 

As a nest step, we assume that the interaction is weak 6 < c&wc, (con- 
dition (ii]) and the tune spread is small X(z’) < co:. The first condition is 
necessary for the introduction of an effective impedance. The centroid os- 
cillations Z(“)(t) then can be separated into the fast synchrotron oscillations 
with the frequency tiS and a slowly changing envelope: 

dn) = a cos(o,t t 2r5 + $3) (B’2) 

where the amplitude n and the phase 9 are slow functions of time. Expand- 
ing the periodic l-function in Fourier series, one finds the dominant response 
of the cavity at, positive and negative synchrotron sidebands of the resonant, 
coupled-bunch frequency: 

q = g T En, [w;, _ (aa + ; ;‘(;;;;;I;;s + ~ + krzf) (B3) 

fi &"-u-kw+lg) 
t b$i - (us - p - kM)Z + in& - p - kM) I 



In the first, equation (Bl), the two-time scale approximation allows us to 
retain only the Fourier component of the collective force F = J$T&,(t + 
2”s) at the frequency w,, yielding: 

$1 + w22!“) 
3 z _ ,,j ($4)” = ,g& [&e”bt+++z”$i)] (B4) 

where 2 is the effective impedance 2 = Z(wS). The impedance Z(w) is: 

Z(w) = -27 1 
1 

( (2r) w:, - (w + p t kM)* + iU/(W t p + kM) (B5) 

+ 
w:[ - (w - p - k.M)~ + iQl(W -/A - LM) 1 

One can now extract, the equation for the slowly varying quantities n 
and y directly from equation (B4). Using the alternative slow variables 
for the centroid g = acosp, 5 = -nw,ain p, and for individual part,icles 
y; = CL< cos ~3;~ 6; = -a<~, sin p; one obtains after averaging over the fast 
oscillations: 

ii + w:y; - gy; + g/wy2 = cc-&i, + 5s) “‘s 636) 

E.quivalently, me can return to the initial variables 5; = zy)? &i = ijo) 
and present the averaged equations of motion in the form 

; 
J$ + u,‘zi - xzg = +& + $h) (BT) 

Q 

In OUT single-bnnch, single-mode wakefield model (1). t,he effective impedance 
Z is defined by only one term in t,he sum in expression (B5). Since me can 
acbive arbitrwy values of 2, and 2; by adjusting wC and N, the single-bunch 
model is fully equivalent, under specified restrictions, to the multi-bunch 
system (Bl). 

32 


